
Dave Backus / NYU

Linear-Quadratic Approximations to Dynamic Programs
September 30, 2004

These notes review linear-quadratic methods of approximating dynamic programming prob-
lems, with the stochastic growth model as a recurring example.

1 A dynamic program

We’ll be concerned with the stationary dynamic program,

max
{ut,xt+1}

E0

∞
∑

t=0

βtf(xt, ut), (1)

subject to
xt+1 = g(xt, ut, εt+1) (2)

with x0 given and {εt} iid with zero mean and unit variance. We refer to x as the state,
u as the control, f as the return function, and g as the law of motion. Both are smooth,
concave, etc. This structure doesn’t cover all cases of interest, but it works for lots of
them, including the stochastic growth model. It’s the standard model in Sargent’s red book
(Dynamic Macroeconomic Theory).

A recursive approach to the solution follows from the Bellman equation

J(x) = max
u

{

f(x, u) + βEJ [g(x, u, ε′)]
}

(3)

The first-order condition is

fu(x, u) + βE
{

gu(x, u, ε′)>Jx[g(x, u, ε′)]
}

= 0 (4)

and the envelope condition is

Jx(x) = fx(x, u) + βE
{

gx(x, u, ε′)>Jx[g(x, u, ε′)]
}

. (5)

The final terms in the last two equations reflect the chain rule, but they look a little different
than usual because x and u are vectors. Here fz is a (column) vector with elements ∂f/∂zi

(z = x or u), gz is a matrix with elements ∂gi/∂zj , and Jx is a vector with elements ∂J/∂xi

(and J>
x is its transpose). The expectation is over ε′.

Typically we solve the first-order condition for u = h(x), referring to h as the decision rule.
In what follows, we look for a linear function h that approximates the solution to the original
problem. Given h, the dynamic properties of the model follow from x′ = g[x, g(x), ε′].

2 Linear-quadratic problems

Linear-quadratic or LQ problems are those with quadratic returns and linear laws of motion.
As a result, the value functions are quadratic functions of the state and the first-order
conditions and decision rules are linear. LQ problems have the property that the decision
rules for stochastic problems are the same as those for the associated deterministic problem
(“certainty equivalence”).

The canonical discounted linear-quadratic problem looks like this: The return function is

f(x, u) = z>
[

Q S
S> R

]

z

= x>Qx + u>Ru + 2x>Su,

where z = (x, u) and Q and R are symmetric. The law of motion is

x′ = Ax + Bu + Cε′.

Since it has no impact on the answer, we’ll solve the problem with ε = 0. We guess that the
value function is quadratic: J(x) can be written x>Px + p for some matrix P and scalar p.
The Bellman equation is then

x>Px = max
u

{

x>Qx + u>Ru + 2x>Su + β(Ax + Bu)>P (Ax + Bu)
}

(6)

= max
u

{

x>(Q + βA>PA)x + u>(R + βB>PB)u + 2x>(S + βA>PB)u
}

.

To find the first-order condition, note the following rules for differentiating matrix expres-
sions (for vectors a, x, and a matrix A):

∂a>x

∂x
=

∂x>a

∂x
= a

∂x>Ax

∂x
= (A + A>)x [= 2Ax if A is symmetric].

(In each case, the derivative is a column vector with elements ∂/∂xi. You can prove both
results by simply writing out the relevant terms.) The first-order condition is

(

R + βB>PB
)

u +
(

S> + βB>PA
)

x = 0,

which gives us a decision rule of the form u = −Fx, with

F =
(

R + βB>PB
)−1 (

βB>PA + S>
)

.

The Bellman equation then gives us

P = Q + βA>PA −
(

βA>PB + S
) (

R + βB>PB
)−1 (

βB>PA + S>
)

, (7)

which is referred to as the matrix Riccati equation. If we find a P satisfying this equation,
we’ve effectively found a solution to the problem.

2

There are lots of ways to find P . One is brute force: start with an initial guess for P ;
plug the guess into the right-hand side of (7) to get a new value of P on the left; repeat
until successive estimates of P are sufficiently similar. This works, but if β is close to one,
it’s pretty slow. I prefer a doubling algorithm that’s a lot faster; see McGrattan (1990) or
Anderson, Hansen, McGrattan, and Sargent (1996).

[Add: summary of the doubling algorithm.]

3 Linear-quadratic approximation

Since LQ problems are easily solved, we often use them as approximations of non-LQ
problems. Typically this is based on a quadratic approximation of the return function and a
linear approximation of the laws of motion, both approximations done in the neighborhood
of the steady state. In this section, we take the more general problem of Section 1 and
describe a method of approximating it by an LQ problem.

Steady state

We define the steady state as the stationary point of the controlled system with the noise
turned off (ie, with ε = 0). We find the steady state by solving the law of motion, the
first-order condition, and the envelope condition for [x̄, ū, Jx(x̄)]. The law of motion (2)
defines a stationary point as

x̄ = g(x̄, ū, 0).

The first-order condition (again, with ε = 0) implies

fu(x̄, ū) + βgu(x̄, ū, 0)>Jx(x̄) = 0.

And the envelope condition implies

Jx(x̄) = fx(x̄, ū) + βgx(x̄, ū, 0)>Jx(x̄).

That gives us the equations need to find the unknowns. An example follows shortly.

LQ approximation

We start with a quadratic approximation of the return function:

f(z) ∼= f(z̄) + fz(z)>(z − z̄) +
1

2
(z − z̄)>fzz(z)(z − z̄)

= f(z̄) + fx(z)(x − x̄) + fx(z)(x − x̄) +
1

2
(x − x̄)>fxx(x, u)(x − x̄)

+
1

2
(x − x̄)>fuu(x, u)(x − x̄) +

1

2
(u − ū)>fux(x, u)(x − x̄)

3

This doesn’t quite fit the LQ setup, since we have the steady state return f and linear terms
fz. We incorpoprate them by augmenting the state with the additional variable “1”. With
this change, the approximate problem fits into the LQ setup:

[

Q S
S> R

]

=





f 1

2
f>

x
1

2
f>

u
1

2
fx

1

2
fxx

1

2
fux

1

2
fu

1

2
fxu

1

2
fuu



 .

This step can be automated by computing the derivatives numerically or analytically using
a symbolic math program. [More on this some other time.]

The next step is to use a linear approximation of the law of motion:

g(x, u, ε) ∼= g(x̄, ū, 0) + gx(x − x̄) + gu(u − ū) + gεε.

Using the same trick as before (adding “1” to the state vector x), we use this to fill in the
matrices (A, B, C):

A =

[

1 0
g gx

]

, B =

[

0
gu

]

, C =

[

0
gε

]

,

where the top rows pertain to the constant 1.

You might guess that this approach is equivalent to using a quadratic approximation of the
Bellman equation, but it’s not. A quadratic approximation of J [g(x, u)] includes second
derivatives of g, which we did not use above. In some examples (see exercise 3) this makes
a big difference.

4 Example: the stochastic growth model

Consider a variant of the stochastic growth model. Utility is u(c), output is y = f(k, z) =
c + x, and the laws of motion for capital and the technology shock are

kt+1 = (1 − δ)kt + xt (8)

zt+1 = (1 − ϕ)z̄ + ϕzt + σεt+1, (9)

with {εt} ∼ NID(0,1) and (z0, k0) given. We generally use the output equation to eliminate
c from the problem and use x as the control. Thus the problem might be represented
recursively by

J(k, z) = max
x

{

u[f(k, z) − x] + βEJ [(1 − δ)k + x, (1 − ϕ)z̄ + ϕz + σε′]
}

. (10)

The expectation is over ε′.

4

Steady state

To find the steady state we have to solve the programming problem, at least in part. I do
this by dynamic programming on the nonstochastic problem with constant z. The Bellman
equation is

J(k) = max
x

{u[f(k, z) − x] + βJ [(1 − δ)k + x]} . (11)

The first-order condition is
−uc(c) + βJk(k

′) = 0 (12)

and the envelope condition is

Jk(k) = ucfk + βJk(k
′)(1 − δ). (13)

We now solve these relations for the steady state defined by k = k′. The envelope condition
(5) gives us

1 = β [(1 − δ) + fk(k, z)] ,

which defines the steady state value of k. The law of motion for capital, equation (8), then
gives us the steady state value of c:

δk = f(k, z) − c.

Thus we find the steady state values of the state variable k and the control variable c, given
values of the various parameters. Output y is implicitly defined by y = f(k, z).

In practice we often do this in reverse, choosing parameters that accord with observed
steady state values (“calibration”). From quarterly postwar data for US we find that the
mean share of consumption of private output (ie, excluding government) is about 0.75, with
the complementary share of 0.25 for investment, and the mean capital-output ratio is about
10 (2.5 for annual output). The law of motion for capital then implies a depreciation rate
of

δ =
1 − c̄/ȳ

k̄/ȳ
=

0.25

10
= 0.025,

which is a reasonable approximation to what we see in the data. (Alternatively, we could
choose δ from depreciation data and then compute the implied capital-output ratio.) The
envelope condition, together with a normalization like ȳ = 1, then tells us what β must be.

Example. Suppose (as above) that the steady state ratios are k/y = 10 and c/y = 0.75,
and a subset of parameters is preset: α = 0.36 (capital’s share), and γ = 2 (risk aversion).
I’ll ignore ϕ and σ, which don’t appear in the deterministic problem. We then find that
the capital-output ratio and consumption share imply δ = 0.025 and β = 0.9891. With the
normalization y = 1, this implies steady state z = 0.4365, which we hit by adjusting µ (an
otherwise worthless parameter).

5

LQ approximation

The next step is to find an LQ problem that approximates ours. There are a variety of ways
to do this, but common practice in real business cycle work is to eliminate consumption
from the problem and use investment as the control. The return function becomes

u [f(k, z) − x] ,

and the laws of motion remain

k′ = (1 − δ)k + x

z′ = (1 − ϕ)z̄ + ϕz + σε′.

The nice thing about this way of expressing the problem is that the laws of motion are
already linear, so it fits right into the LQ framework.

We use one additional trick to fit the problem into the LQ mold. You might notice that
if we use a second-order Taylor series expansion to approximate the objective function, we
have linear as well as quadratic terms. The trick is to handle this by adding a constant “1”
to the state vector, so that the cross terms are linear. Let us say, then, that the state vector
at date t is (1, kt − k̄, zt − z̄). The quadratic approximation of the objective function then
implies

[

Q S
S> R

]

=









u 1

2
ucfk

1

2
ucfz −1

2
uc

... 1

2

[

ucfkk + ucc(fk)
2
]

1

2
[ucfkz + uccfkfz] −1

2
uccfk

... ... 1

2
[ucfzz + ucc(fz)

2] −1

2
uccfz

... 1

2
ucc









(The matrix is symmetric, so I’ve skipped the lower triangle.) The understanding is that
all functions are evaluated at the steady state. Similarly, the law of motion for the state
vector is





1
kt+1 − k̄
zt+1 − z̄



 =





1 0 0
0 1 − δ 0
0 0 ϕ









1
kt − k
zt − z



 +





0
1
0



 [xt] +





0
0
σ



 [εt+1] ,

which defines the matrices A, B, and C.

Example. Using the parameter values of the last section, I find (not guaranteed) that

F = [0.00000 −0.00110 −1.6746] ,

implying the decision rule

xt − x̄ = 0.00110(kt − k̄) + 1.6746(zt − z̄).

Thus increases in capital and productivity both lead to higher investment, the latter because
capital is more productive, the former because it leads to higher saving, hence investment.

6

Log-LQ approximation

A slight variant is to do an LQ approximation in the logs of the relevant variables. You
might try it and compare your answers.

Exercises

Exercise 1. Verify the matrices Q, R, and S in Section 2, and tell me if you find any
mistakes.

Exercise 2. Consider a special case of the LQ problem with x and u both scalars and S = 0.
Show that the riccati equation is quadratic in P and therefore has two solutions. Which
solution is the right one, and why?

Exercise 3. Repeat the LQ approximation of growth model using c as the control rather
than x. Do you get the same answer?

Exercise 4. Apply the LQ method to a variant of the stochastic growth model in which
labor n is added to both utility and production:

U(c, n) = c1−γ/(1 − γ) + η log(1 − n)

F (k, n, z) = kα(zn)1−α.

What are the matrices Q, R, and W? In what ways do the impulse response functions differ
from those reported in Section 4?

7

